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EXACT SOLUTION OF A NONLINEAR .BOUNDARY VALUE PROBLEM 

OF THE THEORY OF CHEMICAL REACTORS* 

V.S. BERMAN and V.V. VOSTOKOV 

in exact solution isobtained foranonlinearbo~da~va~uemodelproblemofstationa~ 
concentration distribution in a one-dimensional tubular isothermal chemical re- 
actor with longitudinal stirring, in which a single chemical reaction takes place. 
It is show that depending on the values of the problem parameters there are either 
no stationary modes, a single or two different stationary modes. Regular and sing- 
ular perturbation methods are used to construct the asymptotic solutions of the 
problem, and the latter are compared with the exact solutions. 

1, Formulation and general solution of the problem. We consider a modelnon- 
linear boundary value problem arising in the course of studying the stationary modes of perfor- 
mance of a one-dimensional tubular isothermal chemical reactor with longitudinal stirring. We 
write the problem in the following dimensionless form: 

where C(I) is the stationary distribution of concentrations along the reactor length, co > 0 
is the concentration of the reagent entering the reactor, k>O is the kinetic constant and 
P>O is the Peclet number. The right-hand side of (1.1) should contain a kinetic function 
describing the dependence of the chemical reaction rate on the concentration /1,2/. One of 
the characteristic features of this function is, that it vanishes at c=O. Inthepresentcase 
the right-hand side of (1.1) contains a function proportional to i/c. This function has a 
singularity at zero, but at large concentrations it approximates sufficiently well the kinetic 
function of the autocatalytic reaction /3,4/ on the segment of its monotonous decrease. 

Below we obtain an exact solution for the problem (1.1) and draw a number of important 
conclusions concerning the existence and number of the solutions. Equation (1.1) is an Emden- 
Fowler type equation, which was already studied analytically in /5-7/. The exact solutionof 
this equation obtained here has not, as far as we know, been obtained before, 

Let us introduce a new independent variable and new unknown function 

In the u and s variables the problem (1.1) assumes the form 

Equation (1.2) allows lowering of the order. Assuming that the derivatives dcldx and dvlds 
cannot be positive (reagent concentration within the reactor cannot increase) and integrating 
the corresponding first order equation- from 1 to S, we write the general solution of (1.2) in 
the form of the following quadrature: 

O(S) 

nl,l/,*;+A =dZ(l-s), Ods<l 
$ 

(1.3) 

where A and u(l) are undetermined constants. Using the boundary conditions (1.2), we obtain 
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A == y2 - In L: (0) =m- 2aZv2 (1) - In V (1) (1.4) 

The second equation Of (1.4) gives the relation connecting constants A and u (1) . To findthe 
constant u(l) we put in (1.3) S= U, and consider the first equation of (1.4). This yields 

I (v) - I (y) - a exp (y*) / y = 0, y = j&i v (1) -= yc (1) (1.5) 

Solving simultaneously (1.3) and (l.S), we obtain the exact solution of problem (1.2), andthe 
problem of existence and number of solutions reduces to that of analysing the transcendental 
equation (1.5). 

2. Existence and number of solutions. Let us investigate thetranscendentalalge- 
braic equation (1.5). Depending onthevalue of the parameters a and y the equation either 
has no roots, or has two different roots ontheinterval (0, Y), or has a single root, 

y = a, a* = a / (2a + 1) (2.1) 

The latter follows from the condition that the derivative of the left-hand side of (1.5) 
vanishes. When y=a, equation (1.5) becomes 

I (r I/P) = I (a) + a cxp (I+) / a (2.2) 

Equation (2.2) determines single-valued the function I= I'*(P). Its graph on the I'P plane 
represents a critical curve separating the regions P>r*(P) in which two solutions of (1.5) 
exist (and hence two solutions of (1.2)) from F<r*(P) where there are no solutions at all. 
When I‘= r*(O), a solution of (1.5) and of (1.2) exists and is unique. We can obtain the 
asymptotic expressions for function r*(p). The computations yield 

r*(P)=1/z--J&(P), P-0 (2.3) 

1 InP 
r*(P)=l+TT-z p’ I E!+(+), Pdrn 

Equation (2.2) was solved numerically by expanding the integral I(z) in terms ofthechebyshev 

polynomials /a/. The critical curve represents a smooth function decreasing monotonously from 

l/Z at P-O to 1 at P-00. Next we obtain the asymptotic expressions for the roots of (1.5). 

In the case of a single root its exact value is given by (2.1). Let us consider the domain 

of existence of two solutions. Taking into account the fact that c(l)= y/y, we obtain the 

following expressions at fixed F: 

c,,~(~)-~(r~Il/r’-_+fol). p-0 (2.4) 

c 1 (1) = v/r' 7+0(l), cz(l)=exp[--(~L--)l(l+~(l))~ P-m (2.5) 

The expressions obtained are all meaningful, since by virtue of (2.3) the domain of existence 

of two solutions is r>l/T when P-O and F>l when P-m. From (1.4) we obtain the fol- 

lowing expressions for c(0) and c (1): c (0) = c (1) cxp (Pr? [I - cz (I)] - P). This yields the asymp- 

totic expressions for c (0) I and computations yield 

C,$ (0) = Cl,2 (1) (1 + 0 (I)), P - 0; c,,,(O) = 1 i- 0 (I), P - m (2.6) 

The first expression in (2.6) means that the reagent concentration, in zero approximationwith 

respect to P, remains constant throughout the reactor length (complete stirring). This fully 

agrees with the result of direct application of the method of regular expansions over the 

parameter P-O /1,9/ to systems of the type (1.1). The second expression in (2.6) means 

that when P-cc then we have c(O)= 1 (perfect displacement) in the reactor with longitudinal 

stirring. 
The stationary modes obtained must be checked for stability. When P-O, we can show 

/1,2,10/ that the solution corresponding to c,(O) and c,(l) is stable, while the solution cor- 

responding to c,(O) and c,(l) is unstable. It can be assumed that a similar situation obtains 

at any value of the Peclet number. 

Fig.1 depicts the dependence of the concentration at the reactor entry and exitonthe 

Peclet number for both modes, at various values of the parameter F. The solid curves re- 

present the concentration at the reactor entry, and the dashed lines at the exit, for F= 1.5 

(curves 1 correspond to the first mode, i.e. s(O)and s(i) and curves 2 to the second mode, i.e. 

to ca(O) and cI (1)). Thedot-dash line represents the concentation at the exit for F= 1.25. We see 

thatatlarge P twodifferentstationary modes exist (corresponding to the region lying above the 
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critical curve). When P-2, both modes merge into a single mode (point on the 

C critical curve) and vanish al- 

. together at smalle; values of P (re- 

gion below the critical curve). We 

can also obtain asymptotic expres- 

sions for the roots of (1.5) for the 
case r-30 with fixed P. The com- 

putations yield 

c+-&+O(+), r---rCo (2.7) 

c* (1) = [ehp (P) - II exp (-FP) (1 + 0 (I)), 

With the roots of equation(l.5) known 

and constant A obtained from (1.4), 

Fig.1 Fig.2 
we can use the quadrature (1.3) to 

calculate the function U(S) and hence 

obtain the stationary distribution 

of the concentration c(z) along the reactor length. 

Fig.2 depicts the results of numerical solution of the equations (1.5) and (1.3). Solid 

curves represent two stationary modes at P= 3, and the dashed lines at P= 6 (curves 1 cor- 

respond to the first mode, i.e. to c,(O) and c,(1) and curves 2 to the second mode, i.e. to 

cz (0) and %(I) ) - From (2.5) we see that when p-03 (perfect displacement), two different 

stationary modes exist. However, if we pass to the limit as P-COO in the initial problem 

(l.l), we lose one of the modes. This is caused by the fact that in this case such a passage 

is not always correct since the right-hand side of (1.1) has a singularity at the zero and 

one of the solutions obtained becomes discontinuous at the limit as P+m. The function 

appearing in the right-hand side of (1.1) is proportional to t/c. We note that the sub- 

stitution c +c+ 6 leads to a more general case, with all results obtained above still valid. 

3. Asymptotic analysis. Below we use the regular and singular perturbation methods 

to construct the asymptotic solutions of the problem (1.1) for the case of P-m at fixed P 

and of r-00 at fixed P. The validity of these methods in the present case can be estab- 

lished by comparing the asymptotic solutions obtained, with the exact solutions obtainedabove. 
First we consider the case of P-m (P fixed). One of the solutions can be constructed using 

themethodof direct (regular) expansions /ll/ assuming that the right-hand side of (1.1) is 

always small. Writing the solution sought in the form of a power series in small parameter 

i/r, substituting this expansion into (1.1) and passing to the appropriate limit, we obtain 

the coefficients of the expansion. At z= 1 the solution obtained coincides with the first 
root of (2.7). In the case when the right-hand side of (1.1) cannot be neglected, we can use 
the expansion method of asymptotic matching/11,12/to construct the second solution of (1.1). 
In the outer region O<X<~ we neglect the reaction. Taking into account the left boundary 

condition and replacing the right condition by C(X)-0 we obtain, as s-l (near the reactor 
exit the reaction must play a significant part) 

c (z) = 1 - exp[P(z - I)1 (3.1) 

In the inner region 1--6<~gl we introduce, near the reactor exit, anewvariable Z= (~-X)/S, 
where 6=6(P) is a small parameter to be defined later. We seek the solution in the form 

c (2) = f(P)+) (i + o(i)) (3.2) 

Let us now pass in (1.1) from the variable z to the variable Z. Substituting into it the 
expansion (3.2) we obtain f(P) = 6(P)/P, and for u(z)we have the problem 

CPU P __-. 
da= - 2v * 2 (0) = 0 (3.3) 

solution of this problem with z+w has the form 

Substituting f(P)and U(Z) obtained into the expansion (3.2) and matching it at z+oi) with the 

expansion (3.1) where z-1, we obtain the following equation for 6 (r) : 

(3.4) 
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Its solution yields 6(r)= F(exp(-PF*) which agrees with the second root of (2.7). 
Let us now construct asymptotic solutions of the problem (1.1) with P-CC and P fixed. 

In this case we have a singular problem for both solutions /12/ and the method of regular ex- 

pansions cannot be used. 

expansions. 
We shall use therefore once again the method of matching asymptotic 

We seek the solution in the outer region a<+<% in the form of a series C(X)- 

!&) + Y,(Z)iP + 0(1/P). Computing the functions y, and y, we obtain a solution, which does not 
satisfy the right boundary condition. To satisfy this condition we consider the boundary lay- 
er l--llP<z<%, near the point z= 1, introducing a new variable E= P(l--) and seeking the 
solution in the form c (5) = c0 (5) + c,(QlP + 0(1/p). 

at E - 00 with y&) at r _ I, 
Calculating the function c0 and matching c,,(5) 

we obtain at the reactor exit a value coinciding with the first 
root of (2.5). 

Let us construct a solution corresponding to the second root. The solution corresponds 
to the case in whichthe chemical reaction cannot be neglected. Instead of the right boundary 
condition we impose on co(S) the condition that Q(E)-O as E - 0. Computations and matching 
with y. (z)yield 

c,(i)=Ij1-&[I-exp(-_)l (3.5) 

To satisfy the right boundary condition we introduce another boundary layer I--E<S<I lying 

inside the first boundary layer near the point Z= 1. Here E= E(P) is a small parameter to be 
defined below. We introduce a new variable t=(l-X)/E within the second layer and seek the 

solution in the form 

c (7) = g (P)e (@(I + o(l)) (3.6) 

Now we pass in problem (1.1) from the variable z to the variablerandsubstituteintothe resul- 

tingexpressiontheexpansion(3.6).Thisyieldsg(P)=~(P)1/~ and for W(T) we have the following 

problem: 

d"w 1 _--- 
a+ - 2F"w ’ $ (0) = 0 (3.7) 

Solution of the problem with z-00 is analogous to the solution of (3.3) with z--+00. Substit- 

uting this solution and function g(P) obtained,into the expansion (3.6) and matching it at 

Z-,CS with the expansion (3.5) we obtain, as t-0, for E(P) the equation VP (r* - i) = p cE) 

where p is a function of a small parameter defined by (3.4). Solving this equationweobtain 

e (P) = 1 exp f- P (rz - I)] 
VP 

which agrees with the second root of (2.5). 
Thus the asymptotic solutions of (1.1) constructed here agree with the exact solutions. 

This confirms the applicability of the asymptotic methods discussed here to solving approx- 

imately nonlinear boundary value problems in the case when the exact solution is not known. 
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